Winter School in Abstract Analysis section Topology Hejnice 30th Jan. - 6 Feb. (2010)

On skeletal maps

by Szymon Plewik (Katowice) Used in Katowice, a short form of the definition of a skeletal map is:

(I) Skeletal means that the images of regularly closed subsets are regularly closed.

See J. Mioduszewski MR0810825 (87h:54070)]. J. Mioduszewski and L. Rudolf observed [see Dissertationes Math. Rozprawy Mat. 66 (1969): *H-closed and extremally disconnected Hausdorff spaces*] that skeletal maps are suitable for the adjoint functor in the theory of Katetov's *H*-closed extensions of (Hausdorff) topological spaces, (1940) - see MR0001912 (1,317i) or (1947) - see MR0022069 (9,153d). For me, a user-friendly definition is:

(II) A continuous function $f : X \to Y$ is called *skeletal*, whenever $Int_Y cl_Y f[V] \neq \emptyset$ for any open $V \subseteq X$.

Two exercises:

(I) \Longrightarrow (II), whenever $f : X \to Y$ is continuous.

Indeed, suppose $V \subseteq X$ is a non-empty open set which witnesses $\neg(II)$. Thus $\operatorname{Int}_Y \operatorname{cl}_Y f[V] = \emptyset$. Also $f[\operatorname{cl}_X V] \subseteq \operatorname{cl}_Y f[V]$, since f is continuous. Hence $\operatorname{Int}_Y f[\operatorname{cl}_X V] = \emptyset$. So, the image of regurally closed set $\operatorname{cl}_X V$ is not regurally closed.

If X is a quasi-regular topological space, then (II) \implies (I), whenever $f : X \rightarrow Y$ is a continuous and closed function.

Indeed, suppose $V \subseteq X$ is a non-empty open set which witnesses $\neg(I)$. Thus $f[cl_X V]$ is a closed set and $f[cl_X V] \setminus cl_Y \operatorname{Int}_Y f[cl_X V] = W \neq \emptyset$. Take an open set $U = V \cap f^{-1}(Y \setminus cl_Y \operatorname{Int}_Y f[cl_X V])$. Thus $f[U] \subseteq W$ and $f[U] \subseteq \operatorname{Int}_Y f[cl_X V]$. Hence $\operatorname{Int}_Y f[U] = \emptyset$. But X is quasi-regular, so any non-empty open set with the closure contained in U witnesseses $\neg(II)$. Thus, for compact Hausdorff topological spaces one can use the following definition:

Semi-open, when compact and Hausdorff is not assumed

Suppose $f : X \to Y$ is a continuous function, where X and Y are compact and Hausdorff. If $Int_Y f[V] \neq \emptyset$ for any open $V \subseteq X$, then f is called skeletal.

There are a few other possibilities to introduce skeletal maps: Not equivalent in general, but equivalent under some restrictions. For examples:

Original definition by M. Henriksen and M. Jerison (1965)

Whenever $\operatorname{Int}_X \operatorname{cl}_X f^{-1}(U) = \operatorname{Int}_X f^{-1}(\operatorname{cl}_y U)$, for any open $U \subseteq Y$.

Almost-open by A. Arhangelskij (1961).

Whenever $f : X \to Y$ is a continuous function such that each non-empty open subset $U \subseteq X$ contains a non-empty open subset $V \subseteq U$ with open image $f[V] \subseteq Y$.

A. Błaszczyk, Coll. Math. 32 (1974)

Whenever $f : X \to Y$ is a continuous function such that perimage (under f) of any open and dense subset of Y is dense in X.

Complete embeddings - regular subalgebras

Let \mathcal{P} be an ordered (partially) set and $\mathcal{Q} \subseteq \mathcal{P}$ be such that any incompabile elements in \mathcal{Q} are incompabile in \mathcal{P} . Then \mathcal{Q} is *complete embeding* in \mathcal{P} , whenever $W \subseteq \mathcal{Q}$ is predense in \mathcal{Q} if, and only if W is predense in \mathcal{P} .

When Q is *complete embeding* in \mathcal{P} , then we write $Q \subseteq_{c} \mathcal{P}$.

When Q and P are Boolean Algebras, then $Q \subseteq_c P$ means that Q is a regular subalgebra of P.

I do not know: Who first considered notions of regular subalgebra! Symbol $Q \subseteq_c P$ complete embedings were used in P. Daniels, K. Kunen and H. Zhou, Fund. Math. 145 (1994).

Inclusion

When the inclusion is a considered order, then compatible means non-empty intersection, incompatible means empty intersection, $\mathcal{Q} \subseteq_c \mathcal{P}$ means: For any $W \in \mathcal{P}$ there exists $V \in \mathcal{Q}$ such that $U \subseteq V$ and $\emptyset \neq U \in \mathcal{Q}$ implies $U \cap W \neq \emptyset$.

Proposition

Let \mathcal{T}_X be the family of all non-empty open subsets of X and \mathcal{B} be a π -base for Y. A continuous function $f : X \to Y$ is skeletal if, and only if $\{f^{-1}(V) : V \in \mathcal{B}\} \subseteq_c \mathcal{T}_X$.

Proof. Consider a skeletal map f and $V \in \mathcal{T}_X$. Take $W \in \mathcal{B}$ such that $\emptyset \neq W \subseteq \operatorname{Int}_Y \operatorname{cl}_Y f[V]t$. If $U \in \mathcal{B}$ and $\emptyset \neq U \subseteq W$, then $U \subseteq \operatorname{cl}_Y f[V]$. Hence $U \cap f[V] \neq \emptyset$ and $f^{-1}(U) \cap V \neq \emptyset$.

Suppose $U \in \mathcal{T}_X$ and $\operatorname{Int}_Y \operatorname{cl}_Y f[U] = \emptyset$. Since \mathcal{B} is a π -base, for each non-empty $W \in \mathcal{B}$ there exists a non-empty set $V \in \mathcal{B}$ such that $V \subseteq W$ and $V \cap f[U] = \emptyset$. Thus $f^{-1}(V) \cap U = \emptyset$, i.e. U witnesses that $\{f^{-1}(V) : V \in \mathcal{B}\}$ is not complete embedding of \mathcal{T}_X .

Suppose \mathcal{B} is a family of sets. We say that a family $\mathcal{C} \subseteq [\mathcal{B}]^{\leq \omega}$ is a *club* in \mathcal{B} , whenever \mathcal{C} is closed under increasing sequence and for each $A \in [\mathcal{B}]^{\leq \omega}$ there exists $D \in \mathcal{C}$ such that $A \subseteq D$.

P. Daniels, K. Kunen and H. Zhou, Fund. Math. 145 (1994), Theorem 1.6

We say that a compact Hausdorff space X is I-favorable, whenever the family $\{\mathcal{P} \in [\mathcal{T}_X]^{\leq \omega} : \mathcal{P} \subseteq_c \mathcal{T}_X\}$ contains a club in \mathcal{T}_X . A join with Andrzej Kucharsk and published result is:

Top. Appl. (2008) A. Kucharski and Sz. Plewik

A compact Hausdorff space X is a I-favorable if, and only if there exists a σ -complete inverse system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ - where all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are skeletal - such that $X = \lim_{\sigma \to \infty} \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$.

Now we can add:

(2010) A. Kucharski and Sz. Plewik

If $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ a σ -complete inverse sequence of I-favorable compact Hausdorff spaces - where all bonding maps π_{ϱ}^{σ} are skeletal and onto, then the inverse limit space $X = \varprojlim \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is I-favorable (also compact and Hausdorff).

・日・ ・ ヨ・・

(2010) A. Kucharski and Sz. Plewik

Any a compact non-metrizable and *I*-favorable space X is homeomorphic with the inverse limit of a continuous sequence $\{X_{\alpha}; p_{\alpha}^{\beta}; \omega \leq \alpha < \beta < w(X)\}$, where each X_{α} is a compact Hausdorff and *I*-favorable space, with $w(X_{\alpha}) < w(X)$, and such that any bounding map p_{α}^{β} is skeletal.

Two last results are proved similar to the first, i.e. using terminology of the open-open game and applying Frink's characterization of completly regular spaces. One can find Boolean Algebra counterparts of the above results in B. Balcar, T. Jech and J. Zapletal, *Semi-Cohen Boolean algebras*, Ann. Pure Appl. Logic 87 (1997) or L. Heindorf and L. Shapiro, *Nearly projective Boolean algebras*, Lecture Notes in Mathematics (1994).

Very I-favorable and d-open maps

Suppose $Q \subseteq P$ are families of open subsets of X. Again following P. Daniels, K. Kunen and H. Zhou, Fund. Math. 145, we write $Q \subseteq_! P$, whenever for any $S \subseteq Q$ and $x \notin cl_X \cup S$, there exists $W \in Q$ such that $x \in W$ and $\emptyset = W \cap cl_X (\cup S)$.

 $\mathcal{Q} \subseteq_{!} \mathcal{P}$ implies $\mathcal{Q} \subseteq_{c} \mathcal{P}$.

Indeed, if $W \in \mathcal{P}$, then let $S = \{V \in \mathcal{Q} : V \cap W = \emptyset\}$. Thus $\emptyset = W \cap cl_X \cup S$. Hence no $W \in \mathcal{P}$ witnessesses that \mathcal{Q} is not clomplete embedding of \mathcal{P} .

The class of d-open maps collaborating with the relation " $\subseteq_{!}$ " similarly as skeletal maps with " \subseteq_{c} ".

The notion of d-open maps was introduced by M. G. Tkachenko. In the end of MR0647029 (83d:54015b) W. Kulpa wrote: The notion of *d*-open map *f* is introduced by the author and means that f(A) is a dense subset of an open set for any open set *A*.

Suitable definition of d-open maps

A continuous function $f : X \to Y$ is called d-*open*, whenever $\operatorname{cl}_X f^{-1}[V] = f^{-1}(\operatorname{cl}_Y V)$ for any open $V \subseteq Y$.

Proposition

A continuous function $f : X \to Y$ is d-open if, and only if $\{f^{-1}(V) : V \in T_Y\} \subseteq_! T_X$.

Proposition

A closed and continuous function $f : X \to Y$ is d-open if, and only if f is an open map.

P. Daniels, K. Kunen and H. Zhou, Fund. Math. 145 (1994)

We say that a compact Hausdorff space X is very I-favorable, whenever the family $\{\mathcal{P} \in [\mathcal{T}_X]^{\leq \omega} : \mathcal{P} \subseteq_! \mathcal{T}_X\}$ contains a club in \mathcal{T}_X .

When we can change " \subseteq_C " onto" $\subseteq_!$ " and \mathcal{T}_X onto the family of of all open and cozero sets in X, then we obtain a charcterization of compact openly generated spaces:

Theorem (with A. Kucharski)

A compact Hausdorff space X is openly genetrated, whenever the family $\{\mathcal{P} \in [\mathcal{T}]^{\leq \omega} : \mathcal{P} \subseteq_! \mathcal{T}\}$ contains a club in \mathcal{T} , where \mathcal{T} is the family of all open and cozero sets in X.

Openly genetrated spaces are introduced by E.V. Shchepin (1976). In fact, if there exists a σ -complete inverse system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ such that all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are open and onto, then $X = \varprojlim \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is openly genetrated.

Also, we have a characterizatin of very I-favorable compact spaces:

Theorem (with A. Kucharski)

A compact space X is very l-favorable if, and only if $X = \varprojlim \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system such that all spaces X_{σ} are compact and have countable weight, but all bonding maps π_{ϱ}^{σ} are d-open and onto.

Methods, for prooving last results, are (very) similar to that with the open-open game and skeletal maps!

A folklore:

J. Mioduszewski said to me that previously, he tried to use the name Henriksen-Jerison map. This gives the abbreviation a *HJ*-map. But, such an abbreviation has well known nazi connotes and it had to be changed. Despite of such connotations, some author's used the abbreviation *HJ*-maps. For example, Coll. Math. 32 (1975), page 187.